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Nonlinear elastic problems in dislocation theory: 
a gauge approach 

V A Osipov 
Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Head Post Office 
PO Box 79, Moscow, USSR 
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Abstract. In the framework of the nonlinear theory of elasticity the new perturbation 
method based on the gauge approach is developed to  study static didocations continuously 
distributed in materials. The self-consistent system of  field equations far defect dynamics 
is presented up to the second-order approximation. The solution for the straight screw 
dislocations is obtained. The problem of  an electron localization in crystals with screw 
dislocations is considered. The localized electron states are found to appear only in the 
second-order approximation for M = 0 where M is the angular quantum number. 

1. Introduction 

The gauge theory of defects is one of the modern trends in elasticity theory [1-3]. The 
Edelen and Kadii. (EK)  gauge model constructed first in 1983 [ I ]  allows us to study 
both the elastic properties of materials with continuously distributed dislocations and 
disclinations and the defect dynamics. The field equations of defect dynamics presented 
in [ I ]  are essentially nonlinear in their origin, so we are, in fact, dealing with nonlinear 
theory. Nonlinear elastic problems in dislocation theory have been investigated for a 
long time (see, e.g., [4] and references therein). Several different methods which employ 
the nonlinear theory of elasticity for treating dislocation theory are known at present 
time. Two of them were developed especially to determine the stress and strain fields 
generated by dislocations continuously distributed in materials [5-7]. For convenience, 
in the following we shall refer to a recent review [4] where the full details of both 
methods can be found. 

It is clear that the exact solutions of a system of coupled nonlinear differential 
equations of defect dynamics are of most interest. Unfortunately, such solutions have 
not yet been obtained. The only known exact monopole-like solution found recently 
(see [SI) is for static disclinations in the framework of the E K  gauge model. This 
solution gives us information about the core of the disclinations (the core radius is 
found to depend on the model parameters). Otherwise, perturbatiion methods should 
be used. 

The approximation procedure, based on a homogeneous scaling of the gauge group 
generators, was developed in [l]. It was shown that in the first-order approximation 
elasticity theory is recovered, in the second-order dislocation dynamics is modelled, 
whereas in the third-order both the dislocation and disclination dynamics are modelled. 
Note that even the linearized system of equations for defect dynamics is difficult to 
solve in most cases. For further simplification one can put all the elastic displacement 
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variables equal to zero. In this case, the characteristic phenomena are described by 
solutions with singularities and, in the first-order approximation, the static solutions 
for edge and screw dislocations are found to be in agreement with classical ones [l]. 

The purpose of the present paper is to show that the EK gauge model allows us to 
study the dislocation problems in the higher order approximations fairly easily even 
if we put all the elastic displacement variables equal to zero. The plan of the paper is 
as follows. In section 2 we construct the general scheme and consider the governing 
equations as well as the constitutive relationships up to the second-order approximation. 
The method for determining the stress and strain fields is illustrated in section 3 using 
as an example the straight-screw dislocations in an isotropic elastic medium. In section 
4 we study the problem of an electron localization in materials with screw dislocations 
where the importance of the second-order solutions is demonstrated. Section 5 is 
devoted to concluding comments. 

2. The general scheme 

Let us start from the Lagrangian that is invariant under the inhomogeneous action of 
the gauge translational group T(3) and takes the following form [I]: 

L=L,+L, ( 1 )  

L, = (po/2)BiSuB: - [A ( EAB8AB)2 + ZpEAB8ACSBDErD]/8 (2) 

where 

describes the elastic properties of the material, and 

L+ = -(s,/2)6,Dbbk"'kbdD:d 

describes the dislocations. 
The strain tensor in (2) is determined to be 

EAB = BXG,B', - SA, 

(3 )  

(4) 

where 

Bb = a&'+@; ( 5 )  

is the distortion tensor. In ( 5 )  a&' describes the integrable part of the distortion, and 
the second term arises from the breaking of the homogeneity of the action of the 
translation group T(3). The state vector x ' ( X " ) = X ~ ( X ~ ,  T) in ( 5 )  characterizes the 
configuration at time T in terms of the coordinate cover (X") of a reference configur- 
ation, and @; are associated with dislocation fields. Tensor Dbb in (3) is determined 
as follows: 

obb =J,$&-J,@~. ( 6 )  

In ( 2 )  and (3) A and p are the Lam6 constants, po is the mass density in the reference 
configuration, sI is the coupling constant, k A B  = -8". kM = l / y  and kab = 0 for a # b 
and y is the positive 'propagation parameter'. The equations of balance of the linear 
momentum have the form well known in a classical elasticity theory 

J4p;-J,Uf=o (7) 
where the explicit expression for the stress tensor 

(8) B c  FD R B  SC U : = ( ~ ) ~ ~ ~ , ( J , X J + @ C ) ( A ~  6 EpD+2pS 6 ERS) 
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and the momentum 

p i  = paS,(a4Xj+ $9. (9) 

+P[aA(aA4b-aD&) -(i/~)a,(a,&-a,4i)] = ( I / ~ s , ) u , !  (10) 

(l /Y)s,JA(aA4~-a,4a)= (1/2s , )p , .  (11) 

(12) 

whereZ'; = ( l / p ) u ' ;  and ~ ' = p / 2 s , .  Ingeneral, we must solve thesystem ( 1 2 )  together 
wi in  inc cumiiuiive reiaiions (4) and (8). Sureiy, ii is a di6cuii prubiem. insiead, we 
shall use the linearization procedure based on the scaling of the gauge group generators. 
Following [I], let us introduce the displacements u ' ( X B )  by the substitution x ' ( X s )  = 
S a X A + u ' ( X B )  and then put all the elastic displacements equal to zero. With the 
scaling parameter E, the components of the distortion tensor can be written as Ba = 
a&'+e4a, or, in our case, B ; = s a + q b a ,  where 4; is expanded in the series in 
--,,--A:-.- I-... ~ - "  -F -. A ;  - A <  L -  A I  1 - 2  A ,  I 
. a . " C C L L " L " ~ y " w C I D  "1 a. c+,A-ac+,A I = , V A T &  Z V A  1 . . . .  

Substituting this expansion in ( 4 )  and (8). we obtain that both EA.  and Zf  can be 
expressed as a power series in a,parameter E 

The Euler-Lagrange equations with respect to 4: are 

and 

Restricting our attention to the static case, we reduce (7) to ( 1 1 )  to the form 
JAZf = 0 and 8,s B D  a A ( a A + D - a D 4 a ) = K 2 X , !  

~ - ~ I _ . ~  _ I ~  ~ ~ . _ - _ I I ~ ~ . . - ~ ~  

:- L.L in wnicn 

~ E A S  2v4;Si~ (13a) 

X f = ( 1 / p )  I uf = , EsBS a S + ( L l 2 )  S f S FD, EFD ( 1 3 4  

,EA,= 214ksu+o4a8,04$ (13b) 

T A -  c s B r S A 1  A i r  s B D g s A  c 
2 b . i  -2LsB" i  " 8 VVB"ji" I -DS 

+ (L/2)(S:SF~,EFD+v4JSsjiSA~SFD,EFD). (13d) 

Here L = Alp, and we have used the explicit gauge conditions q5; = c$;, 4; = 4; and 
&=& that are convenient in our analysis (see [l]). 

Let us note that the equilibrium equations aAX? = 0 must be satisfied in any order 
~rrrnuirrntinn T h a  mmoininn f i a lA  nm.rtinnc in (17) tnLn thn Cfillni&nn Fnrm,  
',&,'Y'""'"'PLLU.'. 1 ..* L'...Y"'...6 .._." * ' I " Y L L " " ~  ... ,.&, .*&.U .La- . Y . . Y . . L . ' 6  I " L  1.1. 

(first order) (140) 8,s B D  a A (aAo+b-aDo&) =K~,x,! 

8,s B D  a A ( a A l + b - a D , 4 a ) = K z z ~ , !  (second order). (146) 
A general plan for a solution, which can be applied to any order approximation, 

has been presented in [I]. Namely, first we must find classes of solutions of the 
equilibrium equations. Next, solve (13c) and ( 1 3 d )  for the 4 s  in terms of the Xs. 
Finally, obtain the 4 s  as explicit functions of position by solving the governing 
equations (14a)  and (14b) .  

For the sake of simplicity, we confine our attention here to problems with axial 
orientation. This is the case for edge and screw dislocations which are of interest here. 
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We assume that the problem depends upon X and Y only, i.e. a ( .  . . ) / J z  = 0. Then, 
the suitable form for ,,Xf that satisfies the equilibrium equations can be chosen as 

At this stage, functions .g = .g (x ,  y ) ,  f = . f (x ,  y )  and 8 = ~ ( x ,  y )  are supposed to 
be arbitrary, and J, = J / J x ,  J: = J 2 / J x 2 .  

Let us consider the first-order approximation. Using ( I3a)  we can rewrite (13c) as 

(16) 
where we have taken the symmetrical form of (15) into account, and Tro+ = a:+;. 
From (16) one obtains that 

(17) 
where a = L/(3L+2) = u / ( v + l ) ,  and U is the Poisson constant. As follows from (15), 
Tr J = A,g+ ,p with. A = J:+ J:. Thus, the strain-stress relationships take the form 

IEAU' iXasi-a8Au(Aig+ tP). (18) 

20+a = ,Xi - LS a Tr o+ 

20+L = ,Xi - as', Tr J 

It should be noted that both the governing equations (14a) and relationships (18) 
are just the same as those obtained using the method described in Krdner et a/ (see 
[4]). To compare their expressions with ours, one must take into account the fact that, 
first, EAB in [4] is twice the usual determination of the strain tensor and second, the 
dislocation density mA' may be introduced as in [I]: mAi  = E ~ " ( J & L  -J,+L). 

Let us consider the second-order approximation. The solutions of the first-order 
approximation are supposed to be known, and we must determine ,+k as functions 
of 2 X a ,  i.e. solve (13d). Performing straightforward calculations, we finally obtain 

2,+%=2XL-a8a(Tr 2 X ) - F a +  G i  (19)  

where 

Fa = 3 0 + ~ S ~ 0 + ~ +  LO+iTr o+ (20) 

CL = aSi[20+:Sk,SEDo+b+ L(Tr 0+)21 (21) 

and Tr 2X = A2g+2p. Substituting (19) in (14b), we obtain the governing equations in 
the second-order approximation 

J : [ ( ~ - ~ ) P , ~ - ~ , ~ - ( F : - G : ) ] + J , J , F : = ~ K ~ J : ~ ~  (220) 

J:[(I-a)A2g-n2p-(F:-G:)]+J,J,F:=2K2J:2g (226) 

(I-a)A2p-aAA2g-A(F:-G:)=2~22p (23) 

(24) 

and 
-2J A 1'--1..2 2J.  r 

Note that the equation for determining 2f is removed from the system. Summing (23a) 
and (23b). we obtain 

A[(1 -a )A2g-a2p-2~ ' ,g l=~(x ,y )  (25) 

( I - a ) A 2 p - a A A , g - 2 ~ 2 2 p = ~ ( ~ , y )  (26) 
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where 

q ( X ,  y )  = J:(F:-G:)+J:(F:- G:)-2J,JyFi 

and @ ( x , y )  =A(F:-G:). In addition to (25) and (26), one of equations (22a) and 
(226) must be satisfied. Clearly, the general solution of (25) and (26) is still complex. 
It should be noted, however, that thus far we have considered K to be an arbitrary 
parameter. This parameter characterizes the ratio of the elastic energy to the dislocation 
one. As has been mentioned in [ 11, the different choices for the order of E of the ratio 
PISI lead to models describing different phenomena. The classical results of the 
elasticity theory may be obtained in the physically meaningful limit K + 0 (or, more 
precisely, K’ - E ) .  As can be seen, for K’- E the second-order approximation equations 
(25) and (26) must be rewritten in the following form: 

)] (27) AA2g =- [ W(x, y )  +-Q(x, y ) + 2 ~ ~  Alg+- Ip  
1 - a  a 

1-20 1-a ( 1 - a  

where (27) serves to determine 2g whereas (28) allows us to determine ’ p  in terms of 
’g. Thus, we can obtain the full solution of the problem for K’- E. Let us realize this 
programme for a concrete example. 

3. An example: straight screw dislocations 

In the framework of the gauge model the first-order approximation for the straight 
screw dislocations continuously distributed in materials along the Z-axis has been 
considered in [l]. It was shown that J is the trace-free matrix with ,g = I p  = 0. In this 
case, the field equations (14a) are reduced to Alf= 2~’,fwith the most general solution 
J =  CK,(&r), where KO is the modified Bessel function of the second kind of order 
zero and r 2 = X 2 +  Y’. From (15) and (17) one obtains 

0 0 -Y 
J: = ~ , , ~ A = . / ~ C ( K / ~ ) K ~ ( J Z K ~ )  (-OY I: :), (29) 

Note that in a general case (29) gives the exponential decay for large distances r from 
the dislocation line, whereas the stress field is known in classical theory to decay as 
l/r. As we have previously noted, the classical results may be obtained by putting 
K ’ -  E. In this case, (140) is reduced to A,f=O and hence we obtain the well known 
first-order solution which in cylindrical coordinates, takes the form ,U+= = WC/r. The 
constant C is determined to be C = ,b/2rr where b = E ,  b is the third component of 
the Burger’s vector. It is clear that an analogous result follows directly from (29) in 
the limit K + 0. 

Since Tr,,b =0, tensors FL and GL take a simpler form. Namely, 

FA=3,4LSL#& and G; = 2aSk,4:Sxr8EDo4b. 

Taking (29) into account we can obtain the exact form of “(x, y )  and @(x, y ) .  First 

Y(x, y )  = ($)[J:(J,,f)’+ J:(J,if)’+2d,J.”(Jyif)(J,if)]-AG (30) 

of all, let us rewrite Y ( x , y )  as 
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where G = G f  = G:= G: .  Making use ofthe fact that in our case ,f is  a radial function, 
we get 

p ( x , y ) = p ( * )  = (~)[(J:,f)2+(2/r)(a,lf)(a:lf)+(a,,f)(J:,f)]- O A ( J , , ~ ) ~  (31) 
and 

@ ( x , y )  =@(I )  =(3/4-a)A(d,,fI2. (32) 

T&ir?g i.to Zccou"! the PXEC! form of i f ,  we rewrite (?!) and (??I 2 s  

q ( r )  = 3K2c2[(K:)'+ (2/r)K,K: + K , K ; ]  - 2 a ~ ' c ~ A K :  (33) 

@(I) = 2 ~ ' C ~ ( 3 / 4 - n ) h K :  (34) 
where K ,  = K,(f),  f =&r, and K :  =J,K,.  In the limit K +O, W(r) is reduced to 
Y(r)=(3-8a)C2/2r4, and Q(r)=(3-4a)C2/r4.  Thus, (27) can be finally written as 

AA2g = 4 N / r 4 =  (N/2)AA(ln r)2 (35) 
where N = ( , b / 2 ~ ) ~ ( 3 - 5 a ) / S ( 1 - 2 a ) .  This result is in good agreement with that in 
[4]. The only constant N in [4] is determined in a more complex form. We note, 
however, that for Y = ( a  = f )  the expression for N in [4] becomes simpler and agrees 
with ours. Thus, we reproduce all results of [4]. Namely, in cylindrical coordinates 
the stress iensor has ihe foiiowing form: 

2u+m. =>U,+ = 0 (36) 

(37) 

(38) 

2u,, = (N/ r2) In r + 2d ,  + d2/ r2 

2u++ = (-N/r2) In r+ 2d, + ( N  - d2)/r2 
___I_^_^ 2 ....,I -I "-- -- .."*....*" ._.L:̂ L -"- L_- A -.--- :--,I L.. .L̂  L .I--.. "--A:.:--- 
W,,C,G U, auu U 2  a,= c"IIDLa_LII> WIIIcLL C.UL vc: UGLGLIILIIICU vy LLlC vuurrua1y CVIIUIIIULI>_ 

Thus, a further analysis of the problem depends on the choice of boundary conditions. 
It is usually assumed that the stress tensor U,, vanishes at the core boundary, i.e. 2u,, = 0 
at r = r, where r, is the core radius. It is beyond the scope of our paper to present the 
explicit expressions for 2u for this case. It is clear that they should be the same as 
those obtained by the method in Kroner ef al (see [4]). 

4. Electron states of screw dislocations 

In this section we consider the concrete physical problem where remarkable effects 
appear only in the second-order approximation. Namely, let us study the long-wave 
e!ectmn stites !oca!ized I t  screw dis!ocatinns. !! is we!! knn\.i!! that the defermatie!! 
potential arising from the long-range strain field in the presence of dislocations may 
result in localized electronic states with energies close to the conduction band (see, 
e.g., [9-141). It should be noted, however, that the localized states of an electron on 
an edge dislocation appear in the first-order approximation whereas for screw disloca- 
tions this effect is essentially weaker. So, in [ 141 and [ 151 the anharmonic approximation 
\uzs .sed to describe !ong-wave quasi-particle states localized at screw dislocations. 
Let us consider this problem in the framework of the gauge approach. 

Making use of the effective mass and deformation potential theories, we get the 
stationary Schrodinger equation 

[A+ m*G(Tr EAS)/fi2]W= - (2m*E/  h 2 ) W .  (39) 
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Here m* is an effective electron mass and G is a constant which characterizes the 
interaction of electrons with acoustic waves and can be defined in the isotropic case 
as G = ($)EF, where E, is the Fermi energy. Note that the only strain component that 
can affect the electron energy in this case is the dilatation. The previously mentioned 
analysis shows that, in the first-order approximation, the strain matrix for screw 
dislocations is traceless (see (29 ) ) .  Hence, we must take into account solutions obtained 
in the second-order approximation. 

= 

2 TI ,$ +Zoqh2, where we have denoted &$' = , ~ ~ S s S A B o ~ ' , .  Making use of (IS), (19)  
and (29)  we find 

(40)  

Restricting our consideration to the case K ' -  E and using the results of the previous 
section we get finally 

As follows Srom (13b) ,  in the second-order approximation we get TI 

Tr 2 E A B  = ( 1  -3U)[A,g+,p  -2Z,d21. 

Tr EAB = E2Tr2EAB = C2(1  - 3 a ) / 8 ( 1  -2a ) r2  (41)  

where an additional inessential constant is dropped and C is defined now as C = b/2?r. 
Let us return to (39) .  Since Tr EA, depends only on r, the wavefunction in (39)  

where M (M = 0, *l, * 2 , .  . .) is the angular quantum number. In this case one obtains 
for the radial part R 

J : R + ( l / r ) J , R + ( 2 m * / h 2 ) [ E -  U ] R  = O  (42) 

may be chase!? 2s 2 praduc! af the rzdi.! 2nd E"gl!!Zr p2ets T!r, e! = p. exp(i.MO), 

where 

U = - ( G / 2 ) T r  E A B + h 2 M 2 / 2 m * r 2 .  (43) 

U = - G ( b / 2 ~ ) ' ( 1 - 2 ~ ) / 1 6 ( 1 -  v )r '+h2M'/2m*r2 (44)  

where w p  have used_ !hp cnndition ?1= U/( U + 1 !. Le! us consider the qua!i!a!ive ana!ysis 

Taking (41) into account we find finally 

of (42 ) .  If U>O, the localized states are not present in the electron spectrum. Con- 
versely, for U < 0 there is an infinite number of discrete levels with € < 0 condensed 
to the point E = 0. 

Let us note that the first term in (44)  is negative due to the fact that v s i .  
Hence, if M = 0, we always (apart from the limiting case p = 0) have the localized 
electron states in materials with screw dislocations. On the other hand, if M # 0; 
the sign of (44 )  depends on the value of the parameter a where (I= 
32,r2f i2M2(1  - v ) / G m * b 2 ( l  - 2 ~ ) .  Setting here G = ($)€,and using the known relation 
E , =  ( fi2/2m*)(6?i2p/g)2", where p is the density of conducting electrons and g 
denotes the degeneracy of electron levels, we draw the conclusion that (I > 1 for all 
real materials (from dielectrics to metals). It means that for M # 0 we have always 
U > 0, i.e. the localized electron states do  not appear in this case. 

It is of interest to note that analogous results have been found in [14]  where, 
however, the only case M = 0 has been considered and the phenomenological constant 
g, has been introduced. Our approach enables us to determine via the main model 
parameters this constant in a way: g , =  - G ( 1 - 2 ~ ) / 1 6 ( 1 -  v). Since v s f  we always 
have g,  s 0 thus leading to an electron localization. 
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5. Conclusion 

The perturbation method developed here in the framework of the EK gauge model is 
simple and can be useful in determining the stress and strain fields in dislocated bodies. 
The presented procedure is quite general and can be applied to other types of disloca- 
tions. However, the calculations within the second-order approximation seem to be 
more tedious. Nevertheless, as has been shown in [l], the results of the classic theory 
may be obtained in the limit when s1 becomes very large, that is when K tends to zero. 
In this case the analysis is essentially simplified. 

Our analysis shows that the gauge theory reproduces the stress fields associated 
with screw dislocations up to the second-order approximation without any consider- 
ation of accompanying displacement fields. It has been noted first in [l] that the field 
equations of the gauge theory replace the compatibility conditions of linear elasticity 
theory. We have shown that this assertion is valid in the framework of the nonlinear 
theory. 

We have considered the problem of an electron localization at screw dislocations. 
The effect of binding of electrons to screw dislocations due to the long-range strain 
field is found to take place in the second-order approximation. 
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